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MULTIPLE VECTOR PRESERVING INTERPOLATION MAPPINGS
IN ALGEBRAIC MULTIGRID

PANAYOT S. VASSILEVSKI, AND LUDMIL T. ZIKATANOV

Abstract. We propose algorithms for the construction of AMG (algebraic multi-
grid) interpolation mappings such that the resulting coarse space to span (locally
and globally) any number of a priori given set of vectors. Specific constructions
in the case of element agglomeration AMG methods are given. Some numerical
illustration is also provided.

1. Introduction

We are given a s.p.d. sparse matrix A : Rn 7→ Rn, which we assume corresponds
to a finite element discretization of a 2nd order elliptic PDE. No element (or grid)
hierarchy is assumed, so we can handle general unstructured meshes.

Our goal is to construct a two–grid, and by recursion, multigrid methods (or pre-
conditioners) to effectively solve systems of equations with the matrix A. A typical
two–grid method involves a smoother M (for example, Gauss–Seidel) and a coarse–
grid correction. The latter gives rise to a projection matrix πA = P (P T AP )−1P T A,
based on a interpolation matrix P : Rnc 7→ Rn, nc < n. Thus, a two–grid error
iteration matrix ETG, takes the form,

ETG = (I −M−T A)(I − πA)(I −M−1).

Alternatively, one can define a two–grid preconditioner

B−1
TG = [I, P ] B̂−1

TG [I, P ]T ,

based on the block–factored matrix

B̂TG =

[
M 0
AP I

] [ (
M + MT − A

)−1
0

0 P T AP

] [
MT P T A
0 I

]
·

By a straightforward computation, one can see that ETG = I −B−1
TGA.

In this paper we will focus on the construction of the interpolation mapping P . For
matrices A coming from finite element discretization of 2nd order elliptic PDEs, a
classical choice of P is that P has row-sum of ones, that is, P interpolates constants
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exactly. In matrix form, one has, for 1c =

 1
...
1

 ∈ Rnc and 1 =

 1
...
1

 ∈ Rn, that

P1c = 1. One may generalize the above minimal requirement, such that for a given
set of vectors vk, k = 1, . . . , m, one has that Range(P ) ⊃ Span{v1, . . . , vm}.

We will adopt the finite element notion of “degrees of freedom” (or dofs), which is
equivalent to row and column indices of A. The row indices of P are also referred to as
“fine” (or fine–grid) dofs, whereas the column indices to as “coarse” (or coarse–grid)
dofs. Finally, there will be natural embedding of the coarse dofs into the fine–grid
dofs, in the sense that the coarse dofs Nc can be viewed as subset of the set of fine–grid
dofs N . Then, a common form of P is

(1.1) P =

[
W
I

]
} N \ Nc

} Nc
.

The above setting of “fitting” exactly several vectors by an interpolation mapping P
has some potential difficulties. For example, let {vk}m

k=1 be such that when restricted
to a local set of indices Ω be linearly dependent, that is

m∑
k=1

αk vk|Ω = 0.

A main example, that we will focus on throughout this paper, will be the case of
finite element matrices A. In particular we will assume that A is assembled from a
set of local element matrices {Ae}e∈T . Consider now the case of Ω being the set of
coarse dofs from a union of elements, E = ∪e. Then, one has

(1.2)
m∑

k=1

αk vk|E∩Nc
= 0.

In the element agglomeration AMGe method ([JV01]) sets like E are used to define
coarse elements. In order to apply recursion one has to define coarse element matrices
appropriately; namely, one constructs P such that it interpolates dofs from E only
from coarse dofs also in E. Let P restricted to E be PE and let AE be the local
matrix corresponding to E, assembled from the element matrices Ae for all elements
e that form E. Thus, based on the above property of P , one has that each vector
restricted to E is interpolated by the columns of P restricted to E, that is, by the
columns of PE. Therefore, based on (1.2), and the fact that vk|E ∈ Range(PE), or
more precisely vk|E = PE

(
vk|E∩Nc

)
, one gets that

m∑
k=1

αk vk|E = PE

(
m∑

k=1

αk vk|E∩Nc

)
= 0.

The latter implies, that the set of vectors {vk} restricted to E (not only to the coarse
dofs in E) are linearly dependent. This need not necessarily be true for the given set
of vectors {vk}. That is, the task of constructing P to meet the main requirement
of the element agglomeration AMGe may not have a solution (in the above setting).
One more point in practice is, that for relatively small sets E, the vectors {vk} may be
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nearly linear dependent locally. This would make the coarse element matrix P T
E AEPE

have a near null–vector which is a spurious one, due only to our construction. This
feature of spurious local (near) null–vectors may cause unnecessary difficulties in
solving the coarse–grid problem. All difficulties above may only happen if we want
to fit several vectors by one and the same P (of the form (1.1)); if only one vector is
to be preserved such difficulties do not arise.

Thus, an algorithm for the construction of P must be provided that accounts for
such local (near) linear dependence of the given set of vectors {vk}. This is the main
objective of the present paper. Our approach that overcomes the above outlined
difficulty is to construct a set of Pk, for k = 0, 1, ..., m, one Pk at the time, such that
the resulting P is simply the collection P = [P1, P2, . . . , Pm] and every new Pk is a
hierarchical complement of the preceding ones P1, ..., Pk−1. More precisely, we seek
P of the form,

(1.3) [P1, P2, ..., Pm] =


W1,1 W1,2 . . . W1,m

W2,1 W2,2 . . . I
...

... . . .
...

Wm,1 I . . . 0
I 0 . . . 0

 .

By this choice of the structure of P one guarantees that P has full column rank and
therefore the Galerkin coarse matrix P T AP is s.p.d. (since A is).

The actual construction of P is explained in Section 2 where the details on con-
structing the columns of P are presented. In Section 3, we describe the choice of the
sparsity pattern of the columns of P (the W–blocks in (1.3)) in the setting of the
element agglomeration AMGe from [JV01]. The final section contains some numeri-
cal results illustrating the performance of the two–grid and corresponding multilevel
AMG methods based on interpolation mappings that interpolate several vectors {vk}.
We used in the tests the coefficient vectors of liner functions 1, x, y (the coordinates
of the nodes of a given finite element mesh). It appeared that for sufficiently aggres-
sive coarsening, the use of several vectors to construct P is beneficial for the resulting
AMG compared to the more classical approach when only one vector is used to con-
struct P . If the coarsening is not as aggressive, as one can easily see, all geometrically
smooth vectors, are pretty close to constant vectors restricted to small neighborhoods.
The latter (“small neighborhoods”) refers to the support of the coarse basis functions
(or equivalently, to the non–zero entries of each column of P ).

2. Construction of multiple vector preserving interpolation

The construction of P as in (1.3) consists of the following steps. We assume that
a coarse grid set Nc of coarse dofs, which we view as a subset of the fine grid dofs
N = {1, 2, . . . , n}, is chosen. Then we split Nc into m groups of non–overlapping
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sets, N c
m ∪N c

m−1 ∪ · · · ∪ N c
1 = Nc. Each Pk admits the form

Pk =


?
I
0
...
0


} N \

(
∪k

i=1N c
i

)
} N c

k

} N c
k−1

...
} N c

1

.

Note that Pk has number of columns equal to |N c
k | (cardinality of N c

k ). In practice,
one starts with a current set Nc = N c

1 and at step k > 1 one augments it with a
newly constructed set N c

k ⊂ N \
(
∪k−1

i=1N c
i

)
, i.e., Nc := Nc ∪N c

k .
To avoid the potential local (near) linear dependence, after a column Pk for a

k ≥ 1 of P is constructed, such that Pkv
c
k = vk one updates the remaining vectors

by computing the residuals

vl := vnew
l = vl − Pkv

c
l , l = k + 1, . . . , m.

Here, vc
l are the restrictions of vl onto the kth coarse grid N c

k . The latter corresponds
to the row indices of the identity block of Pk. A simple observation is, that at every
step k ≥ 1, since vl ∈ Span{Range(Pk), vnew

l }, l > k, one has

Span{Range(P1), . . . , Range(Pk), vnew
k+1, . . . , vnew

m } ⊃
Span{v1, . . . , vk, vk+1, . . . , vm}.

Also, with the above residual modification of the vectors we ensure that the new
vectors vl, for l > k, vanish at all preceding coarse dofs, ∪N c

i , i = 1, . . . , k. Recall
that we identify the coarse dofs N c

k with certain fine dofs, namely, defined by the the
row indices of Pk where the identity block of Pk is placed. The fact that the residual
vector vk+1 vanishes at ∪N c

i , i = 1, 2, . . . , k, allows us to seek Pk+1 having zero rows
corresponding to the set ∪N c

i , i = 1, 2, . . . , k. Thus, we reduce the problem of con-
structing a mapping P that interpolates exactly m ≥ 1 vectors vk, to m consecutive
tasks of constructing a mapping Pk that interpolates only one vector exactly, namely
the residual vector vk := vnew

k . The actual algorithm that one can utilize in practice
depends on the goal one wants to achieve. In AMG, one needs to construct a P that
has certain minimal norm. For example, in [WCS00], and more recently in [XZ04],
one constructs a P (in our case, Pk) that minimizes the trace of the coarse matrix
P T

k APk. This is not the only possible choice (see e.g., [Ch03]). Finally, note that
for k > 1, Pk is sought vanishing at a starting set of coarse dofs N c

1 , therefore one
may expect that P T

k APk be relatively well–conditioned. Thus, the norm in which one
seeks Pk (for k > 1) with optimal properties should not be that important (at least
theoretically).

We have not specified the choice of the sparsity pattern of the columns Pk of P ,
i.e., the sparsity of the W -blocks in (1.3). This is done in the following section for
one specific AMG method, namely, the element agglomeration AMGe ([JV01]).
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3. Selection of sparsity pattern of P in element agglomeration
AMGe

In summary, the element agglomeration AMGe ([JV01]) assumes that in addition
to the fine grid matrix A one has access to the fine–grid element matrices {Ae}e∈T
and the set of elements e ⊂ T , the latter meaning that one knows relations describing
the topology of the fine–grid elements. For example, one needs the incidence matri-
ces element–dof, element–face, face–dof, etc. Based on an agglomeration algorithm
(see [JV01]), one constructs coarse elements E, which are union on (connected) fine
elements, and as described in detail in [V02] one can construct the topology of the
coarse elements. In the “element agglomeration AMGe” method one imposes the re-
striction that the interpolation mapping P has the property that fine dofs that belong
to an agglomerated element E are interpolated only from coarse dofs in E. This in
particular implies that shared dofs by two or more agglomerated elements should be
interpolated only from coarse dofs that are shared by the same agglomerated elements
(that share that fine dof). In some instances this implies that such shared dofs must
become coarse dofs. This is the case for all vertex dofs. That is, the set of vertices
provides a natural minimal coarse grid. This was the choice made in the original
paper [JV01]. The sparsity pattern of P is then clear. For every vertex dof “i”, there
is a column ψi in P and the non–zero entries of ψi correspond to a subset of all dofs
in the union of agglomerated elements E that share that vertex. A natural subset
would be the dofs in the union Ωi of the agglomerated elements that share vertex “i”
which are not on the boundary of Ωi. The “boundary” set is defined as dofs in Ωi

that belong to other agglomerated elements (not in Ωi). Also, one excludes from Ωi

all other coarse dofs (different from i). The resulting local set of fine dofs defines the
support of the “i”th column of P . By this choice one guarantees that dofs belonging
to an agglomerate E are interpolated only from coarse dofs in that agglomerated
element. This is the main requirement that allows one to define a coarse element
matrix in a natural way; namely, let AE be the assembled local matrix corresponding
to the agglomerated element E. Then, the coarse element matrix, corresponding to
the coarse element E, reads Ac

E = P T
E AEPE. Here PE is the restriction of P to the set

E, i.e., the rows of PE correspond to the rows of P restricted to E and the columns
of PE correspond to the columns of P restricted to the coarse dofs from E.

Recall that in the setting of the preceding section, we have P = [P1, P2, . . . , Pm].
Then the sets N c

k are spread over the agglomerated elements and the respective
column “i” of Pk will have support subjected to the agglomerated elements that
share coarse dof “i” , the boundary dofs excluded, as well as all coarse dofs (different
from “i”) from the current and preceding sets N c

j , i.e., for j ≤ k, excluded.

4. Algorithms and numerical illustration

Algorithms for augmenting current coarse grid. It may be a typical situation
in practice that an initial coarse grid Nc := N c

1 is used to construct a P := P1 that fits
the first vector v1. Then after one has computed the residual vectors vk := vk−P1v

c
k,

k = 2, . . . , m with vc
k = vk|N c

1
, one selects the additional coarse setN c

2 ⊂ N\Nc, sets

Nc := Nc ∪N c
2 , and proceeds further. To account for (near) linear local dependence,
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one may want to incorporate a dropping strategy, that is, if some entries of the
(residual) vectors are very small one drops them, by zeroing them. Then, in the
case of element agglomeration AMGe, one may adopt the following strategy. Based
on a “minimal intersection set” algorithm (see below), one can partition all AEs
(agglomerated elements) into non–overlapping sets (groups) of dofs in N \Nc. Here,
at step k, Nc := N c

1 ∪ · · · ∪ N c
k−1. These minimal intersection sets, in the case of

true geometrical finite elements, are the vertices, edge interior, face interior and AE–
interior dofs. Then, if vk is non–zero at a given minimal intersection set, one selects
a new coarse dof from that set, for example by looking at the local maximal absolute
value of vk restricted to that set. If vk is zero (after potential dropping of small
entries), one does not have to select any additional coarse dofs from that particular
intersection set. All newly selected coarse dofs form N c

k .
The algorithm for forming the minimal intersection sets uses the relation “AE dof”

represented by the incidence matrix E , defined as

Eij =

{
1, if dof j is in the agglomerated element i,
0, otherwise.

Note that E ∈ RnE×n, where nE is the number of agglomerated elements and n is the
number of degrees of freedom. Consider now Z = ETE ∈ Rn×n and observe that

Zij = #{E | i ∈ E and j ∈ E},
where # stands for cardinality. In other words, the right hand side of the above
equation equals to the number of agglomerated elements E, such that both dofs
i and j ∈ E. We then split the set of degrees of freedom {1, . . . , n} in non-overlapping
sets {Ik}`

k=1 (called minimal intersection sets) with the property that i and j are in
one and the same set Ik if and only if Zij = Zii = Zjj.

A more formal algorithm to determine these sets is given below. As input the
algorithm takes Z (or equivalently E), and as output, we have the number of minimal
intersection sets ` and also a vector χ = (χ(i))n

i=1 such that χ(i) = k if and only if
i ∈ Ik.
Algorithm 4.1 (Minimal intersection sets).

Set ` = 0; χ(i) = 0, i = 1, . . . , n.
For i = 1 to n do

If χ(i) = 0 then
` = ` + 1
For j such that χ(j) = 0 and Zij = Zii = Zjj do

Set χ(j) = `
end For

end If
end For

Clearly, one can easily derive a version of this algorithm without explicitly forming
Z. In both implementations, the number of operations would be proportional to the
number of non-zeros in E .

Next, we present an algorithm on how to select additional coarse grid based on a
given vector v := vk.
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Table 1. Two–grid (TG) results with linear vector preserving inter-
polation; coarsening factor = 128.

# elements 2048 8192 32768 131072
# dofs 1089 4225 16641 66049

# PCG iter 8 9 10 10
# TG iter 20 18 19 19

%TG 0.40 0.357 0.39 0.388

Table 2. Multilevel AMG results with linear vector preserving inter-
polation; first level coarsening factor = 128.

# elements 2048 8192 32768 131072
# dofs 1089 4225 16641 66049

# PCG iter 8 9 9 9
# AMG iter 20 18 20 23

%AMG 0.40 0.359 0.386 0.41
operator complexity 1.39 1.62 1.79 1.89

# levels 4 6 8 10

Algorithm 4.2 (Selecting additional coarse grid dofs in AMGe).
Let N := N \ Nc be a grid complementary to an initial coarse grid Nc. Let {E}

be a overlapping partition of the dofs in N into sets E which we refer to as AEs (or
agglomerated elements).

Let v be a vector with a non–zero maximum norm; i.e., ‖v‖max = maxi |v(i)| 6= 0.
We will further denote by v(i) the ith entry of v. Consider a given drop tolerance
δ ∈ [0, 1). One constructs an additional coarse grid N c

v, depending on the vector v,
as a subset of the current N in the following steps.

• drop small entries, i.e., if |v(i)| ≤ δ ‖v‖max set v(i) = 0. Also, set N c
v = ∅.

• construct the minimal intersection sets I based on two given relations “AE dof”
and “dof AE” represented by the incidence matrices E and ET , or as described
in Algorithm 4.1, based only on the product matrix ETE.

• compute η(I) = max {|v(i)|, i ∈ I} for every intersection set I and let
imax(I) ∈ I be such that |v(imax)| = η(I).

• if η(I) > 0, augment N c
v with imax(I) for all intersection sets I.

We would like to point out that more efficient (w.r.t. storage) implementation of
Algorithm 4.2 is feasible by combining it with the minimal intersection set algorithm.
In such a case one does not need to explicitly form the minimal intersection sets,
since η(I), and imax(I) can be found during the execution of the inner “For” loop in
Algorithm 4.1.

Numerical tests. The tests problems were the Poisson equation discretized on a
sequence of triangular meshes on the unit square domain with homogeneous Dirichlet
boundary conditions using standard Lagrangian piecewise linear elements. We used
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Table 3. Multilevel AMG results with constant vector preserving in-
terpolation; first level coarsening factor = 128.

# elements 2048 8192 32768 131072
# dofs 1089 4225 16641 66049

# PCG iter 10 16 18 18
# AMG iter 57 74 80 81

%AMG 0.69 0.75 0.76 0.76
# levels 4 6 8 10

Table 4. Multilevel and two–level AMG results with linear vector
preserving interpolation for anisotropic diffusion problem; first level
coarsening factor = 100.

# elements 400 1600 6400 25600
# dofs 231 861 3321 13041

# PCG iter 7 15 23 38
# AMG iter 18 50 99* 99*

%AMG 0.374 0.71 0.84 0.94
operator complexity 1.15 1.51 1.86 1.96

# levels 2 4 6 8

two level # PCG iter 7 15 24 40
# TG iter 18 52 99* 99*

%TG 0.374 0.71 0.84 0.94

element agglomeration with large coarsening factor, that is, to get number of agglom-
erated elements equal to the number of fine-grid elements divided by the coarsening
factor. In our tests the element coarsening factor was either 128 or as close as pos-
sible to 128. The initial coarse grid Nc = N c

1 was simply the set of vertices of the
resulting agglomerated elements (i.e., as in the original element agglomeration AMGe
method from [JV01]). The sparsity pattern of the interpolation matrices was chosen
as described in Section 3, i.e., based on the AEs and the current fine grid.

The vectors that we tried to fit were 1, x, and y, i.e. v1 = 1 = (1)i∈N , v2 = (xi)i∈N ,
and v3 = (yi)i∈N . Here, for a dof i, (xi, yi) stands for its geometrical coordinates.

In the construction of all Pk, k = 1, 2, 3 we used the construction of Pk with the
prescribed sparsity pattern so that the resulting coarse matrix has minimal trace.
The algorithm implemented was based on the additive Schwarz method as described
in [XZ04]. However, the inversion of the actual Schwarz blocks was done only ap-
proximately, by few Gauss–Seidel iterations. The 1st vector (the constant one) led to
a matrix P1 which was computed by a little more accurate inversion of the Schwarz
blocks, whereas for the remaining vectors the Schwarz blocks were approximated only
by one symmetric Gauss–Seidel iteration. To be more specific, let Ωi be the support
set of the ith column of a given Pk. Let Ii be the extension by zero of a vector defined
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on Ωi. Then, the ith Schwarz block is defined as Ti = Ii

(
IT
i AIi

)−1
IT
i . The Gauss–

Seidel iterations are used to evaluate (approximately) the actions of
(
IT
i AIi

)−1
. Then,

if one wants to build a P := Pk such that Pvc = v, where vc = v|Nc
one proceeds

as follows. Let T =
∑

i∈Nc

g2
i Ti. Here, gi = vk(i). Then, ψi = giTiT

−1v defines

the ith column of P . The vector x = T−1v is computed by the preconditioned CG
method applied to Tx = v with a simple diagonal matrix D =

∑
i∈Nc

g2
i IiD

−1
i IT

i ,

where Di = diag IT
i AIi, as preconditioner. Obviously, Pvc =

∑
i∈Nc

giψi = v. The

fact that the resulting P leads to P T AP with minimal trace is proved in [XZ04]. The
motivation to choose the ith coarse dof as in Algorithm 4.2 is that then T gets better
conditioned. Note that too small a value of gi = v(i) will make T almost singular, or
very ill–conditioned.

We show, for illustration, a complete set of coarse basis “functions” (columns of
the interpolation mapping P ) in Figs. 3, 4, and 5, corresponding to one agglomerated
element from the mesh shown in Fig. 2. In Fig. 6, we show that these basis functions
span locally, the constant one, and the coordinate vectors (xi) and (yi).

In the presented tables, one finds two–level and multilevel convergence results for
a V (1, 1)–cycle AMG, used both as a preconditioner in the CG method, as well as in
a stationary iterative process. The stopping tolerance was 10−9 relative reduction of
the initial residual norm. The smoother was the overlapping Schwarz method. The
Schwarz domains were the elements (at the given level) viewed as sets of dofs. At the
initial mesh, these corresponded to a three–by–three matrices. In the case of station-
ary iterations we also show the asymptotic convergence factor %. One can compare
the methods, see Table 2 and Table 3, using the same agglomerated elements, but dif-
ferent interpolation matrices P . Namely, Table 2 corresponds to P that preserved the
linear vectors, whereas in Table 3 only the constant vector was exactly interpolated.

Also for comparison, in Table 1 the two–level results are shown to demonstrate how
close the multilevel results (from Table 2) match the two–level ones.

Finally, in order to demonstrate that just a simple aggressive element agglomeration
may not always work, we show in Table 4, results of the same nature as above, now
for a difficult anisotropic diffusion problem. The anisotropy is generally not grid
aligned. One of the meshes, after one level of agglomeration, is shown in Fig. 1. It is
well–known that such problems would require special coarsening, based for example
on a “compatible relaxation” algorithm, which in short, selects coarse dofs, tight to
the convergence of the smoother restricted to a grid complementary to the coarse
one (a strong theoretical justification for this argument is given in [FVZ04]). The
notion of “compatible relaxation” is introduced in [B00]. For some more details in
this direction we refer to [L04] and [FV04]. Alternative efficient coarsening can be
achieved, in the element agglomeration AMGe framework, based on a variant of the
spectral AMGe method from [Ch03]. The topic of compatible relaxation, however is
not the focus of the present paper.

Conclusions. In conclusion, utilizing several vectors in the construction of AMG
interpolation mappings can be useful if relatively aggressive coarsening is exploited
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Figure 1.
Agglomerated elements from unstructured fine mesh; coarsening factor = 100. Initial

mesh has 6400 elements; # agglomerated elements = 64.

in the algorithm. Potential applications of such interpolation mappings (or resulting
coarse spaces) can be expected in non–linear AMG methods or in homogenization
methods, where one needs more accurate (from approximation point of view) coarse
spaces. These topics are not considered in the present paper.
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Figure 3.
Basis functions associated with one agglomerated element; first 6 ones.
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Figure 4.
Basis functions associated with one agglomerated element; sixth to 12th ones.
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Figure 5.
Basis functions associated with one agglomerated element; 13th to 18th ones.
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Figure 6.
Local representation of 1, x, and y functions associated with one agglomerated

element.


